Can magnetic resonance imaging-derived bone models be used for accurate motion measurement with single-plane three-dimensional shape registration?

نویسندگان

  • Taka-aki Moro-oka
  • Satoshi Hamai
  • Hiromasa Miura
  • Takeshi Shimoto
  • Hidehiko Higaki
  • Benjamin J Fregly
  • Yukihide Iwamoto
  • Scott A Banks
چکیده

The purpose of this study was to compare three-dimensional (3D) kinematic measurements from single-plane radiographic projections using bone models created from magnetic resonance imaging (MRI) and computed tomography (CT). MRI is attractive because there is no ionizing radiation, but geometric field distortion and poor bone contrast degrade model fidelity compared to CT. We created knee bone models of three healthy volunteers from both MRI and CT and performed three quantitative comparisons. First, differences between MRI- and CT-derived bone model surfaces were measured. Second, shape matching motion measurements were done with bone models for X-ray image sequences of a squat activity. Third, synthetic X-ray images in known poses were created and shape matching was again performed. Differences in kinematic results were quantified in terms of root mean square (RMS) error. Mean differences between CT and MRI model surfaces for the femur and tibia were -0.08 mm and -0.14 mm, respectively. There were significant differences in three of six kinematic parameters comparing matching results from MRI-derived bone models and CT-derived bone models. RMS errors for tibiofemoral poses averaged 0.74 mm for sagittal translations, 2.0 mm for mediolateral translations, and 1.4 degrees for all rotations with MRI models. Average RMS errors were 0.53 mm for sagittal translations, 1.6 mm for mediolateral translations, and 0.54 degrees for all rotations with the CT models. Single-plane X-ray imaging with model-based shape matching provides kinematic measurements with sufficient accuracy to assess knee motions using either MRI- or CT-derived bone models. However, extra care should be taken when using MRI-derived bone models because model inaccuracies will affect the quality of the shape matching results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Fabrication of a Four-Dimensional Respiratory Phantom for Studying Tumor Movement in Radiotherapy with Magnetic Resonance Imaging

Introduction: In radiation therapy, determining the location of the tumor accurately during irradiation is one of the most important requirements. However, lung tumors are not fixed in a single location and move during irradiation due to respiratory motion. Due to limitations in assessing such movements, using a lung phantom can be useful and operational for their fast, easy an...

متن کامل

Fabrication of New 3D Phantom for the measurement of Geometric Distortion in Magnetic Resonance Imaging System

Introduction: Geometric distortion, an important parameter in neurology and oncology. The current study aimed to design and construct a new three-dimensional (3D) phantom using a 3D printer in order to measure geometric distortion and its 3D reproducibility. Material and Methods: In this study, a new phantom ...

متن کامل

Fabrication of New 3D Phantom for Measuring Geometric Distortion in Magnetic Resonance Imaging System

  Introduction: Geometric distortion is a major shortcoming of magnetic resonance imaging (MRI), which has an important influence on the accuracy of volumetric measurements, an important parameter in neurology and oncology. Our goal is to design and construct a new three- dimensional phantom using a 3D printer in order to measure geometric distortion and its reproducibility in...

متن کامل

A Geometrical Approach for Automatic Shape Restoration of the Left Ventricle

This paper describes an automatic algorithm that uses a geometry-driven optimization approach to restore the shape of three-dimensional (3D) left ventricular (LV) models created from magnetic resonance imaging (MRI) data. The basic premise is to restore the LV shape such that the LV epicardial surface is smooth after the restoration and that the general shape characteristic of the LV is not alt...

متن کامل

New Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor

Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of orthopaedic research : official publication of the Orthopaedic Research Society

دوره 25 7  شماره 

صفحات  -

تاریخ انتشار 2007